WS 4.2: Empirical Formula Problems

Directions: Determine the empirical formula for the following substances. If a molecular formula cannot be reduced, write “cannot be reduced in the box for empirical formula.”

<table>
<thead>
<tr>
<th>Molecular Formula</th>
<th>Empirical Formula</th>
<th>Molecular Formula</th>
<th>Empirical Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{C}_6\text{H}_6)</td>
<td>(\text{CH})</td>
<td>(\text{C}{10}\text{H}{18})</td>
<td>(\text{C}_5\text{H}_9)</td>
</tr>
<tr>
<td>(\text{C}8\text{H}{18})</td>
<td>(\text{C}_4\text{H}_9)</td>
<td>(\text{C}7\text{H}{15}\text{O}_2)</td>
<td>Not reducible</td>
</tr>
<tr>
<td>(\text{WO}_2)</td>
<td>Not reducible</td>
<td>(\text{N}_2\text{H}_4)</td>
<td>(\text{NH}_2)</td>
</tr>
<tr>
<td>(\text{C}_2\text{H}_6\text{O}_2)</td>
<td>(\text{CH}_3\text{O})</td>
<td>(\text{P}_3\text{F}_6)</td>
<td>(\text{PF}_2)</td>
</tr>
<tr>
<td>(\text{X}{39}\text{Y}{13})</td>
<td>(\text{X}_3\text{Y})</td>
<td>(\text{IF}_5)</td>
<td>Not reducible</td>
</tr>
<tr>
<td>(\text{C}4\text{H}{10})</td>
<td>(\text{C}_2\text{H}_5)</td>
<td>(\text{N}_2\text{O}_5)</td>
<td>Not reducible</td>
</tr>
<tr>
<td>(\text{C}6\text{H}{12}\text{O}_6)</td>
<td>(\text{CH}_2\text{O})</td>
<td>(\text{N}_2\text{O}_4)</td>
<td>(\text{NO}_2)</td>
</tr>
<tr>
<td>(\text{P}_2\text{F}_4)</td>
<td>(\text{PF}_3)</td>
<td>(\text{SF}_6)</td>
<td>Not reducible</td>
</tr>
<tr>
<td>(\text{SO}_3)</td>
<td>Not reducible</td>
<td>(\text{N}_2\text{Cl}_4)</td>
<td>(\text{NCl}_2)</td>
</tr>
<tr>
<td>(\text{N}_2\text{Br}_4)</td>
<td>(\text{NBr}_2)</td>
<td>(\text{P}_2\text{O}_5)</td>
<td>Not reducible</td>
</tr>
</tbody>
</table>

Directions: Solve the following problems. You may need to use a separate sheet of paper.

1) What is the empirical formula for a compound which contains 0.0134 g of iron, 0.00769 g of sulfur and 0.0115 g of oxygen?

\[\text{FeSO}_3 \]

2) A compound is found to contain 53.7 % iron and 46.27 % sulfur. Find its empirical formula.

\[\text{Fe}_2\text{S}_3 \]

3) Barry Um has a sample of a compound which weighs 200 grams and contains only carbon, hydrogen, oxygen and nitrogen. By analysis, he finds that it contains 97.56 grams of carbon, 4.878 g of hydrogen, 52.03 g of oxygen and 45.53 g of nitrogen. Find its empirical formula.

\[\text{C}_5\text{H}_3\text{N}_2\text{O}_2 \]

4) What is the empirical formula for a compound which contains 80.3% zinc and the rest is oxygen?

\[\text{ZnO} \]
5) Rubbing alcohol was found to contain 60.0% carbon, 13.4% hydrogen, and the remaining mass was due to oxygen. What is the empirical formula of rubbing alcohol?

\[\text{C}_3\text{H}_8\text{O} \]

9) Give the name and empirical formula of a compound which contains 0.463 g Thallium, 0.0544 g of carbon, 0.00685 g of hydrogen and 0.0725 g oxygen.

\[\text{TlC}_2\text{O}_2\text{H}_3 \]

6) If 4.04 g of Nitrogen combine with 11.46 g Oxygen to produce a compound with a molar mass of 108.0 g/mol, what is the empirical formula of this compound?

\[\text{N}_2\text{O}_5 \]

10) A compound was analyzed and found to contain 13.5 g Ca, 10.8 g O, and 0.675 g H. What is the empirical formula of the compound? If the compound is ionic, what is the correct chemical formula?

\[\text{CaO}_2\text{H}_2 \]

But knowing what we know about ionic compounds the correct chemical formula would be:

\[\text{Ca(OH)}_2 \]

7) What’s the empirical formula of a molecule containing 18.7% lithium, 16.3% carbon, and 65.0% oxygen?

\[\text{Li}_2\text{CO}_3 \]

11) What is the simplest formula of a substance which contains about 94% sulfur and about 6% hydrogen?

\[\text{SH}_2 \]

8) A sample of indium chloride weighing 0.5000 g is found to contain 0.2404 g of chlorine. What is the empirical formula of the indium compound?

\[\text{InCl}_3 \]

12) Find the empirical formula for a substance with the following mass percentages:

\[\text{Al} = 22\% , \text{P} = 25\% , \text{and O} = 53\% . \]

\[\text{AIPO}_4 \]