Arithmetic Sequences

Example 1
Extending Number Patterns

Use inductive reasoning to describe each pattern. Then find the next two numbers in each pattern.

a. \(9, 15, 21, 27, \ldots\)

b. \(3, 9, 27, 81, \ldots\)

c. \(2, -4, 8, -16, \ldots\)

You try...

a. \(1, 5, 9, \ldots\)
b. \(1, 9, 25, 49, \ldots\)

A number pattern is also called a ______________________. Each number in a sequence is a _____________ of the sequence. One kind of number sequence is an ________________ sequence. You form an arithmetic sequence by adding a fixed number to each previous term. This fixed number is called the ________________.

Example 2
Finding the Common Difference

Find the common difference of each arithmetic sequence.

a. \(11, 23, 35, 47, \ldots\)
b. \(8, 3, -2, -7, \ldots\)

You try...

a. \(5, 2, -1, -4, \ldots\)
b. \(8, 11, 14, 17, \ldots\)
How are arithmetic sequences like the function rules we have been finding?

Write a RULE for the arithmetic sequence 9, 15, 21, 27, ...

Example 3 Finding Terms of a Sequence

Find the first, sixth, and twelfth terms of each sequence.

a. 14, 11, 8, . . .

b. 25, 32, 39, 46, . . .

You try...

Given: -4, -1, 2, 5
Find: A_3, A_{10}, A_{50}

Given: $A_n = 5n + -1$
Find: The first 1st 5 terms of the sequence.